You are here

New perspectives on the biology of acute GVHD.

TitleNew perspectives on the biology of acute GVHD.
Publication TypeJournal Article
Year of Publication2010
AuthorsPaczesny, S, Hanauer, DA, Sun, Y, Reddy, P
JournalBone Marrow Transplant
Date Published2010 Jan
KeywordsAnimals, Antigen Presentation, Antigen-Presenting Cells, Graft vs Host Disease, Hematopoietic Stem Cell Transplantation, Humans, Immunity, Innate, T-Lymphocyte Subsets, Transplantation, Homologous

The use of allogeneic hematopoietic cell transplantation (HCT) has increased as new techniques have been developed for transplantation in patients who previously would not have been considered HCT candidates. However, its efficacy continued to be limited by the development of frequent and severe acute GVHD. The complex and intricate pathophysiology of acute GVHD is a consequence of interactions between the donor and host innate and adaptive immune responses. Multiple inflammatory molecules and cell types are implicated in the development of GVHD that can be categorized as: (1) triggers that initiate GVHD by therapy-induced tissue damage and the antigen disparities between host and graft tissue; (2) sensors that detect the triggers, that is, process and present alloantigens; (3) mediators such as T-cell subsets (naive, memory, regulatory, Th17 and natural killer T cells) and (4) the effectors and amplifiers that cause damage of the target organs. These multiple inflammatory molecules and cell types that are implicated in the development of GVHD have been described with models that use stepwise cascades. Herein, we provide a novel perspective on the immunobiology of acute GVHD and briefly discuss some of the outstanding questions and limitations of the model systems.

Alternate JournalBone Marrow Transplant.
PubMed ID19946340
Grant ListAI-075284 / AI / NIAID NIH HHS / United States
HL-090775 / HL / NHLBI NIH HHS / United States
David Hanauer
University of Michigan Rogel Cancer Center at North Campus Research Complex
1600 Huron Parkway, Bldg 100, Rm 1004 
Mailing Address: 2800 Plymouth Rd, NCRC 100-1004
Ann Arbor, MI 48109-2800 

Research reported in this publication was supported by the National Cancer Institutes of
Health under Award Number P30CA046592. The content is solely the responsibility
of the authors and does not necessarily represent the official views of the
National Institutes of Health.

Research reported in this publication was supported by the National Cancer Institutes of
Health under Award Number P30CA046592 by the use of the following Cancer Center
Shared Resource(s): Biostatistics, Analytics & Bioinformatics; Flow Cytometry;
Transgenic Animal Models; Tissue and Molecular Pathology; Structure & Drug
Screening; Cell & Tissue Imaging; Experimental Irradiation; Preclinical
Imaging & Computational Analysis; Health Communications; Immune Monitoring;

Copyright © Cancer Center Informatics-2011 Regents of the University of Michigan